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GROWTH OF DISTURBANCES IN A SUPERSONIC 

BOUNDARY LAYER 

S. A. Gaponov UDC 532.526 

The onset of turbulence in supersonic flows has stimulated investigations of the sta- 
bility of compressible boundary layers. The first theoretical studies of this problem were 
reported by Lees, Lin, and Dunn (see Lin [i]). Attempts to verify the theory experimentally 
have been undertaken [2, 3], but the experiments were performed with natural disturbances, 
whose wave spectra were not controllable. Consequently, although spatially growing dis- 
turbances were successfully observed in [3], the comparison with the theoretical results was 
of a qualitative nature. The outcome in [2], on the other hand, proved essentially unsuc- 
cessful. More reliable experiments are reported by Kendall [4], who succeeded in confirming 
the theory in application to two-dimensional second-mode disturbances and three-dimensional 
(oblique) waves at a Mach number M = 4.5 and a Reynolds number Re = / ~ =  1550. The 
causes of the failures in studies of two-dimensional first-mode disturbances have yet to be 
explained. 

Experimental studies of the stability of a supersonic boundary layer have been carried 
out at the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the 
Academy of Sciences of the USSR [5]. Reliable data were obtained with the use of controlla- 
ble artificial disturbances. They fully corroborate the basic principles of the theory of 
the stability of both plane-parallel [i] and slightly nonparallel [6] compressible flows. It 
has been established [7] that the wave number spectrum contains several maxima at a given fre- 
quency. The principal maximum corresponds to the results of the linear theory. The others 
could not be explained within the scope of the existing theory. The upstream incursion of 
disturbances has been observed in later experiments [8], but has not been investigated theo- 
retically. Moreover, the spatial growth rates of waves whose fronts propagate at an angle 
X < 45~ relative to the main flow differ from those predicted by the theory of plane-paral- 
lel flows. In the present study, therefore, we continue the theoretical investigation of 
the growth of disturbances in a supersonic boundary layer, taking the new experimental data 
into account. 

i. The stability of a supersonic boundary layer on a flat plate is analyzed both in the 
parallel-flow approximation and with allowance for departures from parallelism. The trun- 
cated Dunn-Lin equations (see [9]) are used in the first case, and the theory of [i0] is 
used in the second case. In the calculations it is assumed that M = 4.0, Re = ~ = 600, 

the Prandtl number Pr = 0.72, and the adiabatic exponent 7 = 1.4. The viscosity--temperature 
relation is described by Sutherland's formula. Here U~ and v~ are the velocity and viscos- 
ity at the outer edge of the boundary layer. 

The disturbance is assumed to be a function of the dimensionless coordinates and time 
in the form 
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where qk is the eigenfun~tion of the stability theory of locally parallel flows, which de- 
pends parametrically on x; ~ is a small parameter characterizing the departure of the flow 
from parallel; ~0 and 6 are wave numbers (which are complex in general); and m is the angu- 
lar frequency. The dimensionless coordinates are normalized to 6 = Jxv~/U~, and the dimen- 
sionless time is normalized to x = 6/U~, the results of the stability analysis of the super- 
sonic boundary layer are given for oscillations of the mass flow, whose spatial growth rate 
is determined from the relation ~r + i~i = (~/im)(3m/Sx). The complex wave number ~ does 
not depend on y for plane-parallel flow, but does depend on it for nonparallel flow. The 
results given below for -~i are obtained at the maximum amplitude of the mass flow inside 
the boundary layer. 

Figure 1 shows the variation of the growth rate --~i as a function of the angle of in- 
clination of the wave vector relative to the direction of the main flow; this angle is de- 
fined as X = tan-1(~r/~r )- Here--~i depends on the constraint imposed on ~ and $. The 
principle used in the calculations is the same as the one underlying the processing of the 
experimental data, namely that 6 is a real quantity. The dashed curve in Fig. 1 corre- 
sponds to the experimental data [8], the dot-dashed line represents the theoretical results 
obtained in the parallel-flow approximation, and the circle-dots represent the results of 
the theory of slightly nonparallel flow at M = 4, Re = 600, and ~ = 2~fv~/U~ = 0.2].3-10 -4 . 
We see that the influence of nonparallelism on the growth rate at the given value of Re is 
strong and more pronounced than established in [I0, ii] for Re = 1550 (M = 4.5) and Re = 
780 (M = 4.0), respectively. We thus have further confirmation of the general theoretical 
conclusion that the influence of nonparallelism increases as Re decreases. A comparison 
of the data (Fig. I) shows that the theoretical values of the spatial growth rate agree 
with the experimental at X < 70 ~ �9 The greatest disparity is observed at large angles X. 
Specifically, even at X = 80~ the disturbances decay in the x-direction (-~i < 0). Special 
calculations show that the growth rate remains positive with increasing angle X for X > 80 ~ 

Inasmuch as the wave number ar depends weakly on ~ (Fig. 2), the increase in the angle 
of inclination of the wave front is associated with an increase in 6- Consequently, the 
wavelength, defined as 2w(~ + 62) -I12, is shorter by roughly one tenth at (e.g.) X = 84~ 
than at X = 0. Under the conditions of the given experiment the dimensional wavelength is 
approximately equal to 3 mm at X = 84~ and is approximately equal to 5 man at X = 80~ 

The discrepancy between the theoretical and experimental data at large angles X can be 
attributed to several causes. For large 6 the wavelength becomes comparable with the dimen- 
sions of the transducer, and the accuracy of the experimental results decreases. The ini- 
tial spectrum of the disturbance in the experiments contains a small fraction of oscilla- 
tions with large values of 6. Their evolution can be influenced by the effects of nonlinear 
interaction of large-amplitude disturbances with small values of ~. 

Finally, nonparallelism affects not only the growth rate of an isolated wave with a 
fixed value of 6, but also causes interaction to take place between waves with different 
values of ~. In particular, two modes with identical values of 6 are observed in the paral- 
lel-flow approximation. Only the results of investigations of the first mode are shown in 
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Fig. i. The second mode corresponds to disturbances that decay in the x-direction. As an 
example, we consider two modes with 2~z,2 = 0.347. We infer from the theory of parallel 
flows that 2~ I = 0.032 - i0.7"I0 -4 and 2~2 = 0.033 + i0.036. The distribution of the mass- 
flow amplitude in the boundary layer for these modes is shown in Fig. 3. It is noteworthy 
that the true values of =z and ~2 are close to one another, even though their corresponding 
eigenfunctions differ. Allowance for nonparallelism shows that the rates of growth or de- 
cay of the peak of the mass-flow disturbance are -~iz = 0-45"10-3 and =i= = -0.021. It is 
evident from these data that the departure from parallelism exerts a strong influence for 
large ~ (particularly in the case of the second disturbance mode), and the results obtained 
without regard for interaction of the two modes becomes unreliable. The growth of disturb- 
ances with large $ therefore remains an open question. It is important to note this fact 
in light of the reported observation [8] of the growth of such perturbations, even though 
their amplitudes were considered too small for them to be analyzed. 

Figure 2 shows the wave number ~r and the "phase velocity" c r corresponding to the x- 
direction as a function of the wave number ~ in the z-direction at the mass-flow peak. 

2. It has been noted [7] that peaks are observed in the spectrum of longitudinal wave 
numbers =r at a fixed frequency m. This fact indicates that the disturbance as a function 
of time and the coordinate ~ has the form ~(~, ~) = A exp[i(~r~- ~t)JH(x), where ~(x) is a 
periodic function with period 2~/~0. In this case the spectral representation is discrete 
with wave numbers ~ = ~r • k~0- This kind of spectrum can exist when a transient disturb- 
ance exp[i(~r~ - ~)], of which Tollmien-Schlichting waves are typical, interacts nonline- 
arly with steady-state waves exp(i~0~). If we abide by the theory of slightly nonlinear in- 
teraction, the waveform of the steady-state disturbance #0(~) exp(i~0x) is described by 
linear stability equations in the first approximation. Nonlinear interaction causes s 0 and 
the amplitude growth rate to vary slightly. An investigation at subsonic velocities shows 
that disturbances which decay in the linear approximation can grow as a result of nonlinear 
mode interaction. Finally, the upstream incursion of transient disturbances has been ob- 
served [8]. 

We have therefore investigated secondary wave modes in addition to the disturbances 
discussed in Sec. I. Figure 4 shows the real and imaginary parts of the wave number ~ as 
functions of the frequency parameter at ~ = 0 and Re = 670 for three disturbance modes (the 
solid curves correspond to ~r, and the dashed curves to -~i)- In the upper part of the 
boundary layer the constant-phase lines for the first and third modes in the xy plane cor- 
respond to the waves incident on the boundary layer, and those for the second mode corre- 
spond to radiating waves. The classification of incident and radiating waves is given in 
[9]. The first and third modes must therefore be excluded in the stability problem for 
parallel flows. However, s must be taken into account in the investigation of the growth 
of disturbances in nonparallel flow, in the presence of interaction, and in the vicinity of 
a localized source. The second mode corresponds to disturbances propagating upstream with 
strong attenuation. It is interesting to note the weak dependence of its dimensionless up- 
stream decay rate on the frequency parameter. Additional calculations show that if Re is 
decreased from 670 to 200 at m = 0.215"10 -~, the quantity -~ i increases only by 25%. How- 
ever, its dimensional value increases considerably, because the thickness of the boundary 
layer decreases by about 0.4 in this case. The dimensionless real part of the wave number 
(absolute value) decreases by about 0.4, and its dimensional value remains constant. 
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It is evident from the results in Fig. 4 that steady-state waves corresponding to the 
first and third modes can exist in the boundary layer. As for the second mode, it under- 
goes upstream attenuation by relaxation in the limit ~ + 0. 
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FEATURES OF SEPARATED SUPERSONIC FLOW PULSATIONS 

AHEAD OF A SPIKE-TIPPED CYLINDER 

V. I. Zapryagaev and S. G. Mironov UDC 534.13:533.6.011.5 

Use of a spike on a blunt body to decrease the aerodynamic resistance is limited by the 
adverse effect of intense flow pulsations, which depend on the shape of the front end of the 
body, the length of the spike, and the Mach number of the flow. Supersonic pulsation flow 
around such configurations have been investigated [1-7]. The intensive pulsations are ex- 
cited by autooscillations in the forward separation zone ahead of the end with the spike. 

The autooscillation system has distributed parameters; modeling it mathematically is a 
complex problem. The trend to construct simplified models makes it necessary to distinguish 
the most important components of the system: the oscillation system itself, the element 
which controls the input of energy into the system, feedback, and the energy source (the 
high-velocity flow) which surrounds the separation zone [8]. Delineating the basic elements 
of the autooscillation system requires detailed investigation, not only of the spectral and 
correlation characteristics of the pulsations, but also the separate stages of the flow pat- 
tern. 

Experimental data on the magnitude and spectral composition of pressure pulsations on 
a cylinder with a conical spike, which has a 20 ~ half-angle, are presented in [7], along 
with a preliminary discussion of the pulsation mechanism. Here we refine the description 
of the pulsation mechanism on a cylinder with a spike. We also give experimental data on 
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